Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An adaptive acceleration scheme for phase-field fatigue computations (2404.07003v2)

Published 10 Apr 2024 in cs.CE

Abstract: Phase-field models of fatigue are capable of reproducing the main phenomenology of fatigue behavior. However, phase-field computations in the high-cycle fatigue regime are prohibitively expensive, due to the need to resolve spatially the small length scale inherent to phase-field models and temporally the loading history for several millions of cycles. As a remedy, we propose a fully adaptive acceleration scheme based on the cycle jump technique, where the cycle-by-cycle resolution of an appropriately determined number of cycles is skipped while predicting the local system evolution during the jump. The novelty of our approach is a cycle-jump criterion to determine the appropriate cycle-jump size based on a target increment of a global variable which monitors the advancement of fatigue. We propose the definition and meaning of this variable for three general stages of the fatigue life. In comparison to existing acceleration techniques, our approach needs no parameters and bounds for the cycle-jump size, and it works independently of the material, specimen or loading conditions. Since one of the monitoring variables is the fatigue crack length, we introduce an accurate, flexible and efficient method for its computation, which overcomes the issues of conventional crack tip tracking algorithms and enables the consideration of several cracks evolving at the same time. The performance of the proposed acceleration scheme is demonstrated with representative numerical examples, which show a speedup reaching four orders of magnitude in the high-cycle fatigue regime with consistently high accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case. Engineering Fracture Mechanics 190:53–73. 10.1016/j.engfracmech.2017.11.036 Ambati et al [2022] Ambati M, Heinzmann J, Seiler M, et al (2022) Phase-field modeling of brittle fracture along the thickness direction of plates and shells. International Journal for Numerical Methods in Engineering 123(17):4094–4118. 10.1002/nme.7001 Amendola et al [2016] Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ambati M, Heinzmann J, Seiler M, et al (2022) Phase-field modeling of brittle fracture along the thickness direction of plates and shells. International Journal for Numerical Methods in Engineering 123(17):4094–4118. 10.1002/nme.7001 Amendola et al [2016] Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  2. Ambati M, Heinzmann J, Seiler M, et al (2022) Phase-field modeling of brittle fracture along the thickness direction of plates and shells. International Journal for Numerical Methods in Engineering 123(17):4094–4118. 10.1002/nme.7001 Amendola et al [2016] Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  3. Amendola G, Fabrizio M, Golden JM (2016) Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses 39(5):487–499. 10.1080/01495739.2016.1152140 Amor et al [2009] Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  4. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. Journal of the Mechanics and Physics of Solids 57(8):1209–1229. 10.1016/j.jmps.2009.04.011 Aygün et al [2021] Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  5. Aygün S, Wiegold T, Klinge S (2021) Coupling of the phase field approach to the armstrong-frederick model for the simulation of ductile damage under cyclic load. International Journal of Plasticity 143(103021). 10.1016/j.ijplas.2021.103021 Bhattacharyya et al [2018] Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  6. Bhattacharyya M, Fau A, Nackenhorst U, et al (2018) A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering 340:630–656. 10.1016/j.cma.2018.06.004 Boldrini et al [2016] Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  7. Boldrini J, Barros de Moraes E, Chiarelli L, et al (2016) A non-isothermal thermodynamically consistent phase field framework for structural damage and fatigue. Computer Methods in Applied Mechanics and Engineering 312:395–427. 10.1016/j.cma.2016.08.030 Bourdin et al [2000] Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  8. Bourdin B, Francfort G, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 48(4):797–826. 10.1016/S0022-5096(99)00028-9 Caputo and Fabrizio [2015] Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  9. Caputo M, Fabrizio M (2015) Damage and fatigue described by a fractional derivative model. Journal of Computational Physics 293:400–408. 10.1016/j.jcp.2014.11.012 Carrara et al [2020] Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  10. Carrara P, Ambati M, Alessi R, et al (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Computer Methods in Applied Mechanics and Engineering 361(112731). 10.1016/j.cma.2019.112731 Carrara et al [2023] Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  11. Carrara P, Rybinski M, Bräunlich G, et al (2023) Griphfith. ETH Zürich, URL https://gitlab.ethz.ch/compmech/GRIPHFiTH Chen et al [2019] Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  12. Chen Y, Vasiukov D, Gélébart L, et al (2019) A fft solver for variational phase-field modeling of brittle fracture. Computer Methods in Applied Mechanics and Engineering 349:167–190. 10.1016/j.cma.2019.02.017 Cheng et al [2022] Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  13. Cheng J, Hu X, Kirka M (2022) A cycle-jump acceleration method for the crystal plasticity simulation of high cycle fatigue of the metallic microstructure. International Journal of Fatigue 165:107185. https://doi.org/10.1016/j.ijfatigue.2022.107185 Cojocaru and Karlsson [2006] Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  14. Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. International Journal of Fatigue 28(12):1677–1689. 10.1016/j.ijfatigue.2006.01.010 De Lorenzis and Maurini [2022] De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  15. De Lorenzis L, Maurini C (2022) Nucleation under multi-axial loading in variational phase-field models of brittle fracture. International Journal of Fracture 237(1-2):61–81. 10.1007/s10704-021-00555-6 Francfort and Marigo [1998] Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  16. Francfort G, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46(8):1319–1342. 10.1016/S0022-5096(98)00034-9 Freddi [2019] Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  17. Freddi F (2019) Fracture energy in phase field models. Mechanics Research Communications 96:29–36. 10.1016/j.mechrescom.2019.01.009 Freddi and Mingazzi [2023] Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  18. Freddi F, Mingazzi L (2023) Adaptive mesh refinement for the phase field method: A fenics implementation. Applications in Engineering Science 14. 10.1016/j.apples.2023.100127 Freddi and Royer-Carfagni [2010] Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  19. Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: A unified approach. Journal of the Mechanics and Physics of Solids 58(8):1154–1174. 10.1016/j.jmps.2010.02.010 Gerasimov and De Lorenzis [2016] Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  20. Gerasimov T, De Lorenzis L (2016) A line search assisted monolithic approach for phase-field computing of brittle fracture. Computer Methods in Applied Mechanics and Engineering 312:276–303. 10.1016/j.cma.2015.12.017 Gerasimov and De Lorenzis [2019] Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  21. Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Computer Methods in Applied Mechanics and Engineering 354:990–1026. 10.1016/j.cma.2019.05.038 Griffith [1921] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  22. Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 221:163–198. URL https://www.jstor.org/stable/91192, 91192 Grossman-Ponemon et al [2022] Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  23. Grossman-Ponemon BE, Mesgarnejad A, Karma A (2022) Phase-field modeling of continuous fatigue via toughness degradation. Engineering Fracture Mechanics 264(108255). 10.1016/j.engfracmech.2022.108255 Gupta et al [2022] Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  24. Gupta A, Krishnan UM, Mandal TK, et al (2022) An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture. Computer Methods in Applied Mechanics and Engineering 399. 10.1016/j.cma.2022.115347 Hansen-Dörr et al [2020] Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  25. Hansen-Dörr AC, Dammaß F, de Borst R, et al (2020) Phase-field modeling of crack branching and deflection in heterogeneous media. Engineering Fracture Mechanics 232:107004. 10.1016/j.engfracmech.2020.107004 Hasan and Baxevanis [2021] Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  26. Hasan MM, Baxevanis T (2021) A phase-field model for low-cycle fatigue of brittle materials. International Journal of Fatigue 150(106297). 10.1016/j.ijfatigue.2021.106297 Haveroth et al [2020] Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  27. Haveroth G, Vale M, Bittencourt M, et al (2020) A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue evolutions in elasto-plastic materials. Computer Methods in Applied Mechanics and Engineering 364(112962). 10.1016/j.cma.2020.112962 Hennig et al [2018] Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  28. Hennig P, Ambati M, De Lorenzis L, et al (2018) Projection and transfer operators in adaptive isogeometric analysis with hierarchical B-splines. Computer Methods in Applied Mechanics and Engineering 334:313–336. 10.1016/j.cma.2018.01.017 Hosseini et al [2018] Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  29. Hosseini ZS, Dadfarnia M, Somerday BP, et al (2018) On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids 121:341–362. 10.1016/j.jmps.2018.07.026 Jaccon et al [2023] Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  30. Jaccon A, Prabel B, Molnár G, et al (2023) Adaptive mesh refinement and cycle jumps for phase-field fatigue fracture modeling. Finite Elements in Analysis and Design 224:104004. https://doi.org/10.1016/j.finel.2023.104004 Kalina et al [2023] Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  31. Kalina M, Schneider T, Brummund J, et al (2023) Overview of phase-field models for fatigue fracture in a unified framework. URL http://arxiv.org/abs/2302.01396, 2302.01396 Khalil et al [2021] Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  32. Khalil Z, Martínez-Pañeda E, Elghazouli AY (2021) A phase-field approach for modelling cyclic fatigue-induced fracture in dissiptive steel components. In: 17th World Conference on Earthquake Engineering, Sendai, Japan Khalil et al [2022] Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  33. Khalil Z, Elghazouli AY, Martínez-Pañeda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Computer Methods in Applied Mechanics and Engineering 388(114286). 10.1016/j.cma.2021.114286 Kiewel et al [2000] Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  34. Kiewel H, Aktaa J, Munz D (2000) Application of an extrapolation method in thermocyclic failure analysis. Computer Methods in Applied Mechanics and Engineering 182(1-2):55–71. 10.1016/S0045-7825(99)00085-7 Kristensen and Martínez-Pañeda [2020] Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  35. Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics 107. 10.1016/j.tafmec.2019.102446 Lancioni and Royer-Carfagni [2009] Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  36. Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. a practical application to the french panthéon in paris. Journal of Elasticity 95:1–30. 10.1007/s10659-009-9189-1 Lemaitre and Doghri [1994] Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  37. Lemaitre J, Doghri I (1994) Damage 90: A post processor for crack initiation. Computer Methods in Applied Mechanics and Engineering 115:197–232. 10.1016/0045-7825(94)90060-4 Lemaitre et al [1999] Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  38. Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. International Journal of Fracture 97:67–81. 10.1023/A:1018641414428 Lo et al [2019] Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  39. Lo YS, Borden MJ, Ravi-Chandar K, et al (2019) A phase-field model for fatigue crack growth. Journal of the Mechanics and Physics of Solids 132(103684). 10.1016/j.jmps.2019.103684 Loew et al [2020] Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  40. Loew PJ, Poh LH, Peters B, et al (2020) Accelerating fatigue simulations of a phase-field damage model for rubber. Computer Methods in Applied Mechanics and Engineering 370(113247). 10.1016/j.cma.2020.113247 Marigo [2023] Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  41. Marigo JJ (2023) Modelling of fracture by cohesive force models: A path to pursue. European Journal of Mechanics - A/Solids 102:105088. https://doi.org/10.1016/j.euromechsol.2023.105088 Miehe et al [2010a] Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  42. Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199:2765–2778. 10.1016/j.cma.2010.04.011 Miehe et al [2010b] Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  43. Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field fe implementations. International Journal for Numerical Methods in Engineering 83(10):1273–1311. 10.1002/nme.2861 Moslemian et al [2011] Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  44. Moslemian R, Karlsson A, Berggreen C (2011) Accelerated fatigue crack growth simulation in a bimaterial interface. International Journal of Fatigue 33(12):1526–1532. https://doi.org/10.1016/j.ijfatigue.2011.06.006 Nesnas and Saanouni [2000] Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  45. Nesnas K, Saanouni K (2000) A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne des Éléments Finis 9(8):865–891. 10.1080/12506559.2000.10511493 Nguyen et al [2015] Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  46. Nguyen T, Yvonnet J, Zhu QZ, et al (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Engineering Fracture Mechanics 139:18–39. 10.1016/j.engfracmech.2015.03.045 Olesch et al [2021] Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  47. Olesch D, Kuhn C, Schlüter A, et al (2021) Adaptive numerical integration of exponential finite elements for a phase field fracture model. Computational Mechanics 67(3):811–821. 10.1007/s00466-020-01964-5 Oskay and Fish [2004] Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  48. Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. International Journal for Numerical Methods in Engineering 61(3):329–359. 10.1002/nme.1069 Pascale and Vemaganti [2023] Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  49. Pascale P, Vemaganti K (2023) The systematic nature of regularization error in phase field modeling: Implications for crack nucleation and propagation. International Journal of Fracture 239(2):189–209. 10.1007/s10704-022-00670-y Peerlings et al [2000] Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  50. Peerlings RHJ, Brekelmans WAM, de Borst R, et al (2000) Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering 49(12):1547–1569. 10.1002/1097-0207(20001230)49:12<1547::AID-NME16>3.0.CO;2-D Pham and Marigo [2009] Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  51. Pham K, Marigo JJ (2009) Construction and analysis of localized responses for gradient damage models in a 1d setting. Vietnam Journal of Mechanics 31(3-4). 10.15625/0866-7136/31/3-4/5651 Pham and Marigo [2010a] Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  52. Pham K, Marigo JJ (2010a) Approche variationnelle de l’endommagement : I. les concepts fondamentaux. Comptes Rendus Mécanique 338(4):191–198. 10.1016/j.crme.2010.03.009 Pham and Marigo [2010b] Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  53. Pham K, Marigo JJ (2010b) Approche variationnelle de l’endommagement : Ii. les modèles à gradient. Comptes Rendus Mécanique 338(4):199–206. 10.1016/j.crme.2010.03.012 Pham and Marigo [2013] Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  54. Pham K, Marigo JJ (2013) From the onset of damage to rupture: Construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics 25(2-4):147–171. 10.1007/s00161-011-0228-3 Pham et al [2011a] Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  55. Pham K, Amor H, Marigo JJ, et al (2011a) Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics 20(4):618–652. 10.1177/1056789510386852 Pham et al [2011b] Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  56. Pham K, Marigo JJ, Maurini C (2011b) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids 59(6):1163–1190. 10.1016/j.jmps.2011.03.010 Schreiber et al [2020] Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  57. Schreiber C, Kuhn C, Müller R, et al (2020) A phase field modeling approach of cyclic fatigue crack growth. International Journal of Fracture 225(1):89–100. 10.1007/s10704-020-00468-w Seiler et al [2020] Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  58. Seiler M, Linse T, Hantschke P, et al (2020) An efficient phase-field model for fatigue fracture in ductile materials. Engineering Fracture Mechanics 224(106807). 10.1016/j.engfracmech.2019.106807 Seleš et al [2021a] Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  59. Seleš K, Aldakheel F, Tonković Z, et al (2021a) A general phase-field model for fatigue failure in brittle and ductile solids. Computational Mechanics 67(5):1431–1452. 10.1007/s00466-021-01996-5 Seleš et al [2021b] Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  60. Seleš K, Tomić Z, Tonković Z (2021b) Microcrack propagation under monotonic and cyclic loading conditions using generalised phase-field formulation. Engineering Fracture Mechanics 255(107973). 10.1016/j.engfracmech.2021.107973 Tan et al [2022] Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  61. Tan Y, He Y, Li X, et al (2022) A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme. Computer Methods in Applied Mechanics and Engineering 399(115459). 10.1016/j.cma.2022.115459 Ulloa et al [2021] Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  62. Ulloa J, Wambacq J, Alessi R, et al (2021) Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Computer Methods in Applied Mechanics and Engineering 373. 10.1016/j.cma.2020.113473 Van Paepegem et al [2001] Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  63. Van Paepegem W, Degrieck J, De Baets P (2001) Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Composites Part B: Engineering 32(7):575–588. https://doi.org/10.1016/S1359-8368(01)00038-5 Vicentini et al [2023a] Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  64. Vicentini F, Carrara P, De Lorenzis L (2023a) Phase-field modeling of brittle fracture in heterogeneous bars. European Journal of Mechanics - A/Solids 97. 10.1016/j.euromechsol.2022.104826 Vicentini et al [2023b] Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  65. Vicentini F, Zolesi C, Carrara P, et al (2023b) On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states Yan et al [2022] Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  66. Yan S, Schreiber C, Müller R (2022) An efficient implementation of a phase field model for fatigue crack growth. International Journal of Fracture 10.1007/s10704-022-00628-0 Zeng et al [2022] Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879 Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879
  67. Zeng J, Zhang M, Yang E, et al (2022) A tracking strategy for multi-branched crack tips in phase-field modeling of dynamic fractures. International Journal for Numerical Methods in Engineering 123(3):844–865. 10.1002/nme.6879

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com